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Random walk models for multifractals 

Thierry Huillett and Bernard Jeannet 
LIMHP-CNRS, Institute Galilee. Paris 13, Avenue Jean-Bapuste Clement, 93430 Villetaneuse, 
France 

Received 25 October 1993, in final form 21 March, 1994 

Abstract. Reversible random walk models for Bernoulli multifnetals in dimension 2 (together 
with marginal versions of these) are first Studied to amount for both geometrical and analytical 
properties of such objects, using large deviation theory. It is also shown how the transience 
(recurrence) of a more mmplex reversible random walk is related to the minimum energy Row 
convergence (divergence) property. New results on the asymptotics of such a walker are then 
derived in both transientlrecunent situations. 

1. Introduction 

Multifractal analysis has recently emerged as an important concept in various fields, 
including strange attractors for dynamical systems, percolating clusters, diffusion limited 
aggregate growth models . . . [3-6,8,13,16,18]. This formalism has been designed in order 
to account for the statistical scaling properties of singular measures when it happens that a 
finite mass can be spread over a region of phase space in such a way that its distribution 
varies widely. The multifractal formalism hangs upon the definition of the singularity 
spectrum which associates to the subset of the support of the measure where singularity has 
given strength, its Hausdog dimension. 

The purpose of this paper is first to reconsider this problem in the case of a Bemoulli 
cascade, from the point of view of simple irreversible two-dimensional random walk models 
to which large-deviation results can be applied and which prove a very useful tool as far as 
the asymptotics of the distribution is concerned. 

Second, we are interested in second-order statistics of joint volume and mass fractions 
processes, i.e. into the ‘energy’ of the splitting process. It happens that under certain 
conditions that we define, energy diverges. Finally, the well known relation [lo, 151 of 
this problem to the recunencdtransience transition of a particular reversible denumberable 
Markov chain is discussed in some detail. 

2. Definitions 

We define the following problems that we consider. 
Fix the (integer) topological dimension d ,  of some ‘regular’ (i.e. non-fractal) compact 

set I, to be called the initiator. Let V denote its ‘volume’. Suppose, now, a mass m, 
uniformly distributed on I, splits into M sub-masses: 

M 
def def 

ml = mlrl, . . . , mM = mrM (with lrl > 0, = 1) 
l=I 
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respectively distributed on the sub-volumes of I :  

T ffuiiler and B Jeannet 

Bf def 
vl = Vfl ,  ..., V M  = VfM ( J I  €10, I[, 1 = 1, ..., M), 

Three different cases arise: 
f, < 1, in which case the fraction fo !$ 

1 - f, of the volume V receives a zero mass. (This situation is encountered, for 
example, with the middle third Cantor set, with I = [O, I ] , )  

f, > 1, in which case the initiator I ‘grows’ 
in some embedding space of higher dimension than d, (this situation is encountered, for 
example, with the von Koch curve with I = [0, I], and with Mandelbrot’s fractal U- 

clusters [13]). 

(1) Contraction. This happens if 

(2)  Expansion. This happens if 

(3)  Critical case. When 
The above generator defines the first step of the procedure to be indefinitely iterated, 

since each subvolume splits into sub-subvolumes associated with sub-submasses in the same 
ratios (fr, r,) as for the initiator, . . . . 

Intimately associated with this problem is an M-Cuyky  tree (figure I) ,  r, for which 
the label (1, 1) is attached to the root, and ( ~ ( i ) ,  p(i)) to any other vertex i, at distance li[ 
from the root, with 

fi = 1. 

the natural decompositions of the considered cylinder i E [ 1,  . . . , MI’I}. 

Figure 1. The Cayley tree. 

Note that no self-similarity of the chunks is assumed here, and that if this were to be the 
I = 1, . ,. , M ,  with e, their similarity ratios, would fit the definitions. 

As is well known [6,8,9], much information on the limit mass distribution is 

dcf case, then fi = 

encapsulated in the joint partition function: 
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and in the free energy function 

1 
n (1) 

Before entering in some detail into these considerations, let us give a stochastic formulation 
of this problem. 

F(hi ,hz )  = - -  l~gMYn(Ai,Az). 

3. The equivalent stochastic formulation 

The above enumeration problem has a clear counterpart that we wish to discuss now. 
M " )  at random. To do this, first 

note that i(.) can nicely be represented by a random vector i(,) = ( L I ,  . . . , Lj,  . . . , Ln) ,  with 
L j ,  j = 1 , .  , , , M ,  independent and identically distributed random variables equidishibuted 
on ( 1 , .  . . , M], i.e. P ( L ,  = 1 )  = I/M, I E { I , .  . . , M } ,  j E (1 ,  . . . , n). 

At step n,  pick up one chunk i(,) among (1 , .  . . , Nn 
dd 

The random mass fraction attributed to i(,) is therefore 

and its random volume fraction 

Letting, then, the log variables be 

then X, is easily seen to be a discrete time process with independent increments (PII) with 
value in Rcz recursively defined by the random walk 

Xo = (i) &+I = Xn + A x n t i  

the increments' law being given by their real Laplace transform, presenting a statistical 
dependence between the two components: 

Consequently 

This stochastic formulation of the former enumeration problem allows for the use of the 2D 
large-deviation theorem and some marginal versions of it. 
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It is indeed known from the law of large numbers that 

1 as.- lim -X, = AX 
n+m n 

- 
with AX the increments' average, and that, from the central limit theorem, 

has asymptotic normal distribution of zero mean, identity variance, with X the variance 
covariance matrix of the increments. 

Also, one learns from large-deviation theory [ I ]  that, letting the concave analytic 
cumulant function be: 

- log,(E(M-X.AX)) d^=' 1 + F(1) X E BZ 

be the analytic Legendre transform of F (figure 2). defined on the convex hull S of the set 
of points (- log, 9. -log, A), I = 1, . . . . M, then: 

Theorem 1. 
- 

For any convex Bore1 set A c S, not including AX: 

In this theorem, the function f(a) has the following remarkable interpretation (see 
figure 3): 

Proposition I .  Let 

f(X) 2 f(VF(X)) = A .  VF(X) - F(X) X E wz 
be the A-representation of f(a). Let 

be a two-parameter family of probability measures, then: 

i.e. f(X) is the Shannon entropy of p(X)  U 
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Figure 1 This plot represents the different views of f as a function of P. In the lower right 
figure the dashed curves within the domain S represent various level lines of F that are of 
interest. 
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Figure 3. The upper left plot represents the graphs of F. wherw the upper right one is the 
hepresentation of the Shannon enmpy /. Their respective level lines s e  beneath. 

Before introducing now a related problem of interest in ID, let us first define the 
following quantities: 

Using these notations, the following holds: 

Corollary I. If a E ]a,aM]$ 

Fa@) = F(L ,  -nk) &(a) inf(a. L - F a @ ) )  with (Y E [am@), (YM(u)]  

and 

def 

h 

def . %(a) = m F  (-logM(nlfi-')) < 0 

and 
I d .  .... M 

def (Yy(a) = sup ( - logM(m&-Q)) > 0. 
{=I.. ..a 

Then. 
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with a a fixed real constant. One wants to evaluate def Proof 
P(Y,,, > 0) for large n. Notice first that the event Y,,a > 0 also is, from (2): 

Let Y"," = Xn,r - 

I o g f i U d  
b N d  > a  

and that in order that this problem has no trivial solution a must fall in the range In. a ~ ]  
(the symmetric event Yn,a < 0 should be considered if a E [a,, Z[, in the same way). As a 
consequence, 

and the above statement is a one-dimensional version of the large-deviation theorem applied 
0 

From thedefinition of fa@) one obtains fa@) = ah;(a)-F,(h:(a)) with Fi(hz(a)) s 
to the PI1 Yn,a . 

a. so that: 

M 

u(a) = f(0) = - F,(h;(O)) = log, c(nlf,-=)*:(o) 
I= I  

where Fi(h;(O)) = 0. Figure 4 below represents u(a).  

representation of f a @ ) ,  one obtains the well known result [7,17]: 

Proposition 2 .  Let 

Also, letting a:(h) be the inverse of h;T(a), and f,(h) hFi(h) - F&) be the h- 

be a one-parameter family of probability measure. Then f,(h) is the Shannon entropy of 
Pl,ao.). 

Figure 4. The graph of u(n)  
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Also, letting 

be the R h y i  entropy of zfh-", I = 1,. . . , M, and 

the Kullback information gain, then the following relation holds: 

0 
A 

.fa@) = De(A) - 1-1 G a ( A ) .  

Remark I .  
log-density process defined by: 

Another immediate consequence of theorem 1 concerns the asymptotics of the 

def dei !4h) 
= - 

lo(W) 
&,I = &.I - Xn.z = - b N ( d  with 

the random density of the chunk i(,). 
Introducing 

dcf RI p [ =  - 1 = 1 ,  ..., M 

a,(l) = inf (-logMP,) 

A 
dcf 

( = I .  .... M 

and the average density 

~ m ( l ) ~ f - - ~ c o g M P I  1 M  

M f = I  

then for all a0 E ]i(l), ry,+,(l)]: 

Alternatively: 
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4. The singularity spectrum 

Let f.(az) dc=' f (aaz. a2) now denote the intersection of the graph of the function f(a) 
with the plane having equation 01, = (1012 (figure 5). 

Theorem 2. f . ( a z )  is maximum at #(a), located at the point A4 of the plane with the 
equation 011 = ua? for which x(aF(u))  = -F = a(u). 

x(a2) is tangent at at@) to a line of slope g(a) passing through the origin, N, for 
which a2 =a,"@) is the point of the plane with equation aI = uaz for which F = 0 (see 
figure 5). 

Moreover, g(u)  = infA,(aAl + ?(AI)), a E [u , , , ,u~I ,  is real concave analytic as the 
Legendre transform of the real convex analytic solution ?(AI) of F ( A l ,  r(Al)) = 0. This 
defines a unique volume fraction scale 

der 

The point P. for which a2 = CY;(U), is located at the intersection of the plane with equation 
at = uaz and the level line F = -x(a), with x(a) e o(a) geomelxically characterized in 
figure 5. 

Figure 5. The o-cutset o f f  and the various pieces of information attached to it ,  

Prooj. From (3), f(a) is also f(a) = X * ( a )  . a-- F(X'(a)) with ViF(X' (a ) )  = Q 

or V a f ( a )  = X " ( a )  defining X"(0r). Therefore fd(a2) = AY(aa2, a2)a + h;(aaz, az). 
Defining Q as a point of the curve L(a2) for which a2 = af(a), let us derive the equation 
of the tangent at Q. It is: 

Y = i ( a f ( a ) )  + pQ(a)(aZ -&a)) 

with 

pQ(a) = Ay(aaf@), a f ( a ) b  + i;(naf(a), 



6324 

It is also 

T Hiriller and B Jeannet 

y = pQ(u)a, - F ( X * ( U o r , O ( U ) ,  a,o(u))), 

It intersects the axis a2 = 0 at y = -F(X"(aot,o(n),(~2P(a))). We focus our attention on 
three particular points: 

(i) Q = M. It is the case p = 0. M is the maximum of the function ~ ~ ( C Y Z ) .  The two 
representations of the equation of the tangent allow us to write 

f . ( a r ( a ) )  = - F(X*(aruzM(a), #(a))) % U @ )  

i.e. 

X .  V#(X) = a .  Vzf(a) = 0. 

(ii) Q = N .  It is the particular point for which F = 0. It is the only point of the 
curve ~ ( ( Y z )  for which the tangent goes through the origin. We define p N ( a )  = g(a) 
to be the slope of this curve in N .  The result f . ( a f ( u ) )  = g(a)a t (a )  follows 
immediately. The geometric properties of Legendre transforms allows us to conclude as for 
g(a) = infA,(ah + ~ ( h ) ) ,  a E [a,, ml. 

o(a)/g(a).  In this point, P, 
the intersection of the tangent with the axis LYZ = 0, x(a)  = - F(X*(aa[(a),  a;@))) 
geometrically characterizes the required value of F .  0 

Remark 2. It should now be noted that the large deviation result (4) can be reformulated 
in the following equivalent manner: 

der 

(iii) Q = P. This point is defined thanks to ";(a) 
def 

If a E la, aul:  

or: 

giving the asymptotics of Hulder's exponents re- artition in the tree. 
Let us study in more detail the function s(a) = d,g(a), which is the singularity spectrum 

of the measure /* [2,4,5,16,18]. 
First observe the geometric interpretation of g(a) (see figure 6) is the following. Fix 

a E [U,, aM]:  a line of slope -a is tangent to the function s (h)  at h;(a). It intersects the 
line with equation 

Thus g(a) ,  a E [a,. au], varies in the range 0 and ds, where ds is the unique solution 

From (I ) ,  

de! 

= 0 at g(a). 

of F(0,  hz) = 0. 
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Figurc 6. The geometrical interpretation of p ( a )  in the A plot. 

and thus ds is the unique solution of: 

Three different cases arise: 

M 
ds > 1 if Cfi > 1 (expansion) 

(=I  

In figure 7 the graph of $(a) 2 d , g ( a )  has been represented. 
Two remarkable points are worth being discussed. 
From theorem 2, 

g(a) = inf(aA1 + r (At ) )  = ah;@) + s(A;(a)) 

But from the definition oft. F Q I ,  r(A1)) = 0, thus 

with +(hy(a)) = - a  
A I  
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Figure I. The graph of s(a)  

Hence s ( a )  attains its maximum 

Ds is the Hausdolff dimension of the concentration set of the procedure defined in section 2 
or the dimension or the support of the measure (see [2,18] for rigourous results). 

Also, at a = ir, 

I D(T.  f) dlir is called the information dimension of the measure 1181. It has the 
following interpretation. Consider the set of chunks for which p(icn,) x f P ( a ) n ,  for large 
n. and whose coarse Hirlder exponent is a .  

The mass carried by those chunks, fiom (5), therefore grows like: 
f P ( a ) - W ( d f P ( a ) ’ ”  = f p ( a y ( 0 - 8 ( a ) )  

(the product of their number by their mass). 

I D ( r ,  f) is thus the information dimension of the measure. 

set: 

Thus, those chunks for which a = --5(l) carry all the mass, i.e. @(-+(I)) = 1. 

Other entities can be defined, namely, the R h y i  dimension function of the concentration 

and the metric R h y i  entropy of T :  

Remark 3. Once fi E IO, 11, 1 = 1, . . . , M ,  are given, ds is totally determined from (6). 
Thus ds can be plotted as a function of the vector f. From the implicit function theorem, 
d s ( f )  is analytic on the open cube IO, 1 [M, and undefined at the edges (0, . . . , 0,1,0, . . . , 0), 
I = 1,.  . . M, of this cube. In the case M = 2, it has a ‘beak’ shape (see figure 8). 
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Figure 8. The beak s h w  surface. 

5. Energy 

We now come to the study of the energy line A] + A2 = 2 of the plane ( A l ,  12). Let 

Define the quantity: 

to be called the ‘energy’ of the tree r (because second-order statistical properties of the 
joint mass and volume fraction processes MP’” are involved). 

From (7), this is also: 

- 1 provided r P $  < 1 
1 

M A 2  E?(A~)  = 1 - E,, r1 ‘xi L otherwise. 

Among all flows T ,  there is one, say n‘(A2), of minimum energy EF(12) = 
Argmin, E? (12) = EF‘(”’)(Az) which is shown to be: 

rrA2 
ir ; (Az)  = 1 = 1, . . . , M .  E,”=, rrAa 

Thus the energy of the minimum energy flow is: 

This quantity is finite provided the following condition is satisfied 
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Remark 4 .  There is an analogy between this formulation and the one currently used in 
electrical network theory [10-12,151. the flow p ( i )  being conserved at each node i of the 
tree. Thus r( i )Aa,  P ( L ) ~ >  can be interpreted as resistances and conductances, respectively. 

Also, it is easy to check that on letting pm = infi p~ and p~ = supl pl three different 
situations arise: 

( I )  pm < p~ e 1 iff a,  > I. and E,"=, p p  = 1 has a unique positive solution A;@); 
thus criterion (8)  is satisfied when A? < h:(p).  

It should also be noted that if CL, f, > 1 there is at least an 1 E [ 1, . . , , M ]  for which 
]TI < f,. so one may conclude that p, e 1. Thus, we call the situation under consideration 
here, pm < p~ < 1. the 'strong expansion' case, because the density of the elementary 
chunks is very low. 

(2) 1 p, < p~ iff a~ < I ,  and EL, p? = I has a unique negative solution A;(p); 
thus criterion (8) is satisfied when A2 > A;(p). 

We call this situation the 'strong contraction' case, because the density appears very 
large for symmetrical reasons. 

(3) pm < 1 < p~ iff a, c I e a ~ ,  E:, p:' = 1 has no solution in Az, and criterion 
(8) is always satisfied. (This situation includes the critical case). 

T Hui/iet and B Jeannet 

6. Reversible random walk and the  energy problem 

So far, we have been interested in random walks on the directed tree r. Reversible random 
walks on the undirected tree whose edges are labelled with their conductances (which allows 
for the definition of transition probabilities) are in natural correspondence with the previous 
formulation. We wish to work out this analogy now and exhibit some of the results obtained. 

We thus define the following random walk on r. 
A walker starts at the root of the tree and moves downwards on one of the available 

edges with probability 

Once any vertex other than the root has been reached, it moves downward with probability 

PI=  del PP I =  I .  ..., M 

and upwards with the remaining probability: 

so that: 

This walker will either return to the root infinitely often almost surely (recurrence) or move 
to the boundary of the tree (transience). 
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The associated state we are interested in is -logu(i), with u(i) = p(i)/p(i)'> the 
'potential' of edge i currently visited by the walker. More precisely, let us now construct 
recursively the denumerable Markov chain of interest: 

(9) 

def 

X ~ + I  AXI . 11+01+ (Xn + Axn+t)  . ~ { X : < I ]  x, = (0, . . . , 0, . . .)' 
Here 

dei , 
x n  = (lll",-1ogul,,," ,..., -logur,,O . . . .  ) t  

x, = 111. 

with 
0 def . 

d2f the (random) distance to the root of the currently visited edge i at step n, and UI, - ?q,/p?, 
the local potential variation along the vertex Lj E (1, ..., MI, j E (1 ,..., [iIn]. The 
probability disuibution of AX1 is therefore 

M 
* dl' P;'8q with VI - ( I  , -  l0gur,O, ...)' 

I=1 

(with S the Dirac measure). 
The probability distribution of AXn+l is Po& + E,"=, P&,, with 

0 0 0 0 . . .  
uo dei = AoX, + a0 A. = [ 8 ;; ,;, ;\:I the upward shift operator 

with a0 = (-l,O, 0,. . , ) I  the upward shift operator, and 
def 

VI = ALX, + ai 

with a r = ( l , - l o g u l , O ,  ...)' definingthedownwardshift. 

6.1. Random distance of the walker to the root 

Using Bays '  formula, it is easy to derive the result: 

Lemma 1. Letting P(n .  q )  5 P(X: = q) ,  for any q E N, and Qp,(7) = Ee-Y'X" (with 
7 = (yo, y t ,  y2. . . . )'), the real Laplace transform of X,'s law, the following recurrence 
holds: 

an+1(7) = 

def 

M 

p;urp(n,  0) + Poem [ Qm + Ably) - ~ ( n ,  0 ) )  
I=1 

M 

+ SU:' {Q,([I + ~017)  - P(n, O)I 
I=I 

with P(0,O) = 1, @o(y) = 1. [? 
It is of importance (for examining the transition recurrencdtransience) to determine the 

whole distribution of Xt, i.e. of the random distance to the root of the walker at time n. 
A first step in this direction follows immediately from the lemma. 
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Corollary 2.  If @,(yo) 

T Huillet and 5 Jeannet 

@,(yo,O,. . . )  = Ee-mXO denote the yo-marginal, one obtains: 

(10) @,+I(Yo) =e-’P(n,O)+(@.(~)  -P(n.O))(Poe”+(I - Po)e-”) 

with @o(yo) = 1. 

Also, it follows from elementary combinatorics that: 

P ( 2 p + 1 , 0 ) = 0  f o r a l l p a 0  

1 
P(Z(p + 1),0) = P ( 2 p .  0) - - [Po(l - Po)lP+’Ap+i 

P(2,O) = Po 

with 

Po 

0 

the Catalan number. 
Putting together all these preliminruy results, one obtains: 

Theorem 3. The walk defined by (9) (of period 2) is: 

(1) transient iff PO c 4 (i.e. when condition (8) is satisfied) 

(2) 
(3) recurrent positive iff  Po > f. 

In this last situatioon, 

recurrent null iff Po = Jj 

and: 
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P ( 2 p .  O ) t Z p  denotes the generating function of the series Pmof. If W )  E 
P ( 2 p ,  0). p 2 1, it follows from expression (11) that: 

* ( t j  E [(2Pof2 - 1) + J1 - 4Po(l - Po)fZ] 
2Po(l - t 2 )  

provided 

The limit l i m , ~ ~  @(f) exists and is Po/(l -  PO), provided that PO c 1 (transient case). In 
the case PO > f the series P ( 2 p ,  0) diverges (the recurrent case), and from (11) and 
the well known expression of the generating function for Catalan’s numbers: 

it follows that: 

1 1 
Po Po 

P ( m , O ) = P o -  - ( c p ~ , l ~ p ~ , - P o ( l - P o j ) = f ~ -  -(~(l-ll-2Pol)-Po(l-Po)). 

Thus: 

(i) in the case PO < 4, P(m. 0) = 0 (PO = 4 is a case of null recurrence) 

(ii) in the case PO > f, P(m.0) = - (positive recurrence) 

and the expectation of the first return time to zero TO is E(T0) = 2P0/(2fo - l), therefore 
finite. 

The limit expressions ending theorem 3 are immediately derived from the fixed point 

2P0 - 1 
Po 

of (10). 

Remark 5. The results relating condition (8) to the transience of some reversible random 
walk have been known for a long time (see [12,15] and [lo, 111 for a much more general 
setting of the tree structure). Limiting ourselves to Cayley trees allows for complete results. 

6.2. Random pofential of the walker 

Another marginal of @.(y) that is of interest i s  O,,(yo, y )  = an(y = y ~ ,  y ,  y ,  . . . , yk = 
y ,  . . .)), giving the joint probability distribution of 

def &f 

i.e. of the joint distance to the root and ‘log potential’ states. 
From lemma 1, it appears that a recursive equation for @“(yo, y )  is not so easy to 

derive, because @ , ( [ I  + Ably) = @,,(y = yo, 0, y ,  7,. . .) is a new entity to generate. 
Iterating nevertheless, this generation ends up after a finite number of steps on @“(y = 
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yo, 0, 0, . . .) % @.(M), whose generation is given in corollary 2. After some tedious 
computations which we omit here, one can finally show that QP,(yo, y )  is also recursively 
defined, a n d  

T Huillet and B Jeannet 

@~+I(Yo, U )  = A(yo. Y ) @ ~ ( Y o ,  Y) + B,(YO, Y) 
with 

A h ,  y )  = Poema*(y)-] + (1 - Po)e-ma'(y) 

~ N ( y o ,  y )  = PoP(n.  o)(e-ma*(r) - eyoa*(v)-') 
M 

a'(y) = P;u;. 
I=I 

This recurrence is defined for n > 1, with @o(yo, y )  = 1. @](yo,  y )  = e-%*(y) defining 
the initial conditions. 

6.2.1. The recurrent case. Therefore in the Po > 1 case, since P ( w ,  0) = (2Po - l)/Po: 

P-m 

def 
lim @ z ~ + I ( Y o ~  Y) = @zd(m. Y) 

provided that a*(y)e-m < Po/(l - PO), giving the asymptotic distributions of the joint 
states, through their Laplace transforms. 

In Fahcular, Qzd(O,y) gf Eu(i&&)Y is defined, provided a * ( y )  c pa/(' - PO), 
i.e. provided y < 1 (from the definition of a*(y) ) ,  so that the first, @:'(CO, 1) Eu(iZd), 
and second order moments of the potential diverge, whereas all limit moments of the random 
variable - logu(igd) exist as successive derivatives of @:'(CO, y )  5 Eu(izd)  at y = 0. 

We have thus related the divergence of the energy of the minimum energy flow to the 
divergence of the equilibrium second order moment for the potential in the reversible current 
walk. 

The final problem we would like to introduce is the following. 

6.2.2. The transient case. Assume the reversible walk is transient. We want to attribute 
a 'cost function' to any particular trajectory of such a walker and compute the average of 
this cost over all possible trajectories. More precisely, the cost of the transition AC.,,+l ( y )  
between times n and It + 1 is given by: 

(i) u( in+l )y  for a downward move of the walker; 
(ii) -u(i,)Y for an upward move of the walker, which means that the walker resfores 

his 'potential energy' to the system. In more precise terms: 

Acn,n+l(y)  = -e-(o.Y.Y.,.-)xm . 1 + e-(o.Y.Y *..I )&+I . 4x:+, -X,o=l) lx:+,-x:=-ll 
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Using B a y s ’  formula, one can show that the average cost us such a transition is: 

E A C n , n + ~ ( y )  = (-PO + a * ( y ) ( l  - p0))(%(0, v) - P ( n .  0)) + P ( n . O ) a ’ ( y )  

so that the global average cost over all possible such trajectories is: 

using the fact that 
that 
which we omit. Two particular cases are worthy of interest, namely: 

P(2p, 0) = Po/( l -2Po) ,  in the transient case, and the obvious fact 
%(O, y )  converges as a consequence of transience, and after some computations 

Observing that the minimum energy flow is obtained for nl = n;(J.,) = Pr, then Po/(l-Po) 
is the local potential U, = rl ’nl associated to this flow. Therefore, a way to realize this 
flow is to force the local potential increment between any two connected edges of the tree 
to be identical and equal to this value. so that, globally, 

def A 

Po 
c(&)”=1--7pn “31 

is the potential variation between the root and any vertex of the boundary of the tree. 
If this constraint is not satisfied, we observe that the reversible walker measure. through 

C ( 2 ) ,  the energy dissipated by the tree as defined by the local current and potential 
increments 

We have thus associated a ‘cost functional’ to the reversible transient walker, the 
finiteness of which in the average is to be related to the existence of the energy of the 
minimum energy flow. 

- 
= u , / r y  and (Po/(l - Po))ul, respectively. 

7. Concluding remarks 

This paper has been concerned with random walk models for multifractals where both mass 
and space have been partitioned. 

The first part has looked at the formalism of a Bernoulli cascade in terms of a two- 
dimensional process with independent increments. This has allowed for a direct use of 
the asymptotic result (theorem 1 concerning the deviation to the central limit theorem, the 
rate of growth of the deviation probability being related to the Shannon entropy f of a 
two-parameter exponential family of probability measures (proposition 1). 

The geometry of the two-dimensional problem has also been underlined. Considering 
then the related one-dimensional process, Y,,a, allowed for the large-deviation results 
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(corollary I), concerning the ratio process, log(mass)/log(volume) of the atoms, and 
underlined the essential role of the quantity a ( a ) ,  the geometrical interpretation of which 
has been given. More work is probably necessary here to fully understand this quantity (in 
particular its Legendre transform). 

Finally, considering a cutset E of f has allowed for a geometrical characterization of 
g ( a )  (and hence s (a ) ) ,  which is the standard singularity spectrum of the multifractal measure, 
as originally inhoduced in [6] ,  and extensively studied by Mandelbrot and coworkers in the 
sequel. In particular, its geometrical relationship to o ( a )  has been underlined. 

The second part of the paper has been devoted to the 'energy' of the splitting process, 
i.e. to second-order statistics ofjoint volume and mass fraction processes, and the possibility 
of the divergence (resp. convergence) of the minimum energy flow. Although results relating 
this possibility to the recurrence (resp, transience) of some reversible random walk on the 
tree are already available (see [12,15] and [IO, 111 for a much more general setting of the 
tree structure), we have shown how complete results (theorem 3) can be obtained if one 
limits oneself to the case of the Bernoulli cascades. In particular, the limit distributions of 
both random distance to the root and potential of the reversible walker have been explicitly 
computed in the case of recurrence positiveness. 

Finally, we have related the divergence of the energy to the divergence of the order 
y (> 1) fractional moment for the limit potential of the recurrent walker. In a dual way, 
we have shown that the energy convergence is to be related to the finiteness of a certain 
cost-functional of interest attached to the transient walker. 

T Huiller and E Jeannet 
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